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ABSTRACT   

 
In 2003, corrosion damage to hydraulic and nitrogen pipe work resulted in thirteen RAAF Hawk 
aircraft being declared unserviceable.  The reason for the corrosion was not readily apparent and 
DSTO was approached to identify the cause and recommend suitable prevention measures.  
Initial appearances indicated that the corrosion was most likely due to either incorrect use of 
corrosion protective coatings or their application and/or galvanic corrosion due to exposure in a 
marine environment.  Upon receipt of this task a test programme that involved electrochemical 
potentiodynamic and galvanic studies, exposure trials of a model of the pipe work and quality 
control studies of the protective coatings used was initiated to identify the cause of the corrosion.  
It was concluded from this testing that the premature failure of the Hawk hydraulic fittings was 
due to galvanic interactions between the cadmium, mild steel and unprotected stainless steel 
component parts , combined with the use of the aircraft in a coastal location and the cadmium 
coating thicknesses being below the specified levels.  To minimise the risk of further corrosion a 
suitable coating should be applied to the pipe work adjacent to and over the fitting, the pipe work 
should be passivated and the specified cadmium coating thickness applied to the fittings. 
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Corrosion of Hawk Lead-in-Fighter Hydraulic Pipe 
Work     

 
 

Executive Summary    
 
On the 31st July 2003 corrosion damage was discovered on the hydraulic and nitrogen pipe 
fittings within the main landing gear wheel well of an RAAF Hawk aircraft.  Subsequent 
inspection of the fleet determined that a total of thirteen aircraft were affected and 
declared unserviceable.  An initial investigation by DSTO identified two factors as being 
possible causes of this corrosion problem: 

1. The cadmium-plating used to protect the fitting was damaged and below the 
specification; 

2. The different materials used for the pipe work and the fittings may have been 
interacting to accelerate the corrosion process 

The purpose of the work reported here was to test the conclusions from the initial 
investigation by performing laboratory-based tests. 

On the aircraft components tested, the cadmium-plating was found to be below 
specification.  It was also clearly demonstrated that the interactions between the materials 
could lead to an acceleration of the corrosion.  The corrosion could be reduced by ensuring 
that the cadmium-plating thickness is within the specified range and ensuring that the 
lacquer coating applied to the fittings extends onto the pipe work for a few centimetres.  
The pipe work could also be passivated to reduce the interaction between the materials 
used.  These actions could reduce corrosion and assist with aircraft availability. 
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1. Introduction 

On the 31st July 2003 corrosion damage was discovered on the swaged hydraulic and nitrogen 
pipe fittings within the main landing gear wheel well of an RAAF Hawk aircraft.  Subsequent 
inspection of the remainder of the fleet identified this problem as being widespread with  
most aircraft being affected.  A total of thirteen aircraft from 76 SQN and two aircraft from 
79 SQN were declared unserviceable.  An initial investigation by DSTO [1] identified two 
factors as being possible contributors to the corrosion problem.  The first involved damage to 
the corrosion protection scheme, and cadmium-plating measured to be below specification in 
some regions of the pipe fittings.  Secondly, that there may have been galvanic interaction 
between the pipe and pipe fitting leading to an acceleration of the corrosion rate. To gain a 
better understanding of the failure of these fittings, a short scientific investigation was 
undertaken and is reported in this document. 

 

2. Experimental Methods 

2.1 Test alloys and metals 

The pipe work which carries hydraulic fluid and nitrogen consisted of piping manufactured 
from BS T72 stainless steel and swaged unions and nipples manufactured from BS S154 alloy 
steel. It was not known if the stainless steel had been passivated.  The swaged unions and 
nipples were protected with a cadmium coating that was chromate conversion coated (CCC) 
and a polyurethane lacquer.  Figure 1 shows a  pipe fitting with white, grey and brown/red 
corrosion product, indicative of both cadmium and steel corrosion. 

 

 

Figure 1: Corroded pipe fitting 

 

The testing was completed using materials as close as possible in composition to those 
materials used in the Hawk aircraft.  The stainless steel used was SS321(Ti) which was the 
closest available match to BS T72 and the alloy steel selected was AISI 4340, a similar steel to 

Swaged union 

Swaged nipple 

SS pipe 
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the BS S154.  The compositions of the materials used and those from the aircraft components 
are listed in Table 1. 

Table 1: Composition of alloys used during the test programme compared with those used in the 
Hawk aircraft 

 Weight % 
Alloy Fe Cr Mn Mo Ni P S Si C Others 
BS T72* Bal. 17-

19 
0.5-
2.0 - 9-12 Max 

0.035 
Max 
0.025 

0.2-
1.0 

Max 
0.08 

Cu Max 0.5 
Nb Min ‡ - Max 1.0 

SS321 
(Ti)† 

Bal. 17-
19 

Max 
2.0 - 9-12 Max 

0.045 
Max 
0.04 

Max 
1.0 

Max 
0.08 

Ti 
Max 0.7 

BS S154* Bal. 0.5-
0.8 

0.45-
0.7 

0.45-
0.65 

2.3-
2.8 

Max 
0.025 

Max 
0.015 

0.15-
0.35 

0.27-
0.35 

Al 
0.015-0.05 

4340† Bal. 0.7-
0.9 0.7 0.2-

0.3 1.83 Max 
0.035 

Max 
0.04 0.23 0.37-

0.43 - 

N.B. *  in use on Hawk aircraft 
 †  used during test programme 
 ‡  10 x carbon content 

Cadmium coatings were applied in-house using pure cadmium anodes. The procedure 
involved an initial scrub in a pumice slurry, an alkaline degrease and an etch in 50% 
hydrochloric acid for thirty seconds prior to plating. The specimens were then rinsed and 
plated in a commercial plating solution (Brycad 53, composition 23 g/l cadmium, 120 g/l 
sodium cyanide, 20 g/l sodium hydroxide and 1 % by volume Brycad brightener). The plating 
was conducted at 20°C with a current density of 3 A/dm2 for 30 minutes. This treatment 
typically gave a cadmium thickness of 20-25 μm. Chromate conversion coating treatments 
were undertaken on aluminium samples using a commercial solution, Alodine 1200, and a 
commercial deoxidiser, Deox7. The procedure involved deoxidation for five minutes at room 
temperature (22°C) followed by rinsing in running water for 2 minutes and then CCC for two 
minutes at room temperature. The cadmium electrode was conversion coated using the 
DEF(STAN) 03-33/1 procedure [2] and passivation of the stainless steel and Hawk hydraulic 
pipe was achieved by immersion in 25% nitric acid, 2.5% sodium dichromate solution for 
20 minutes at 55°C. 

 

2.2 Electrochemical methods 

The experimental work undertaken consisted of potentiodynamic polarisation and 
potential/current galvanic couple experiments. 

2.2.1 Potentiodynamic polarisation 

Potentiodynamic polarisation experiments were conducted using a Princeton Applied 
Research Potentiostat model 273 or 273A.  A three-electrode electrochemical cell incorporating 
two carbon rod counter electrodes and a saturated calomel reference electrode, with a Luggin 
capillary, was employed.  All experiments were conducted in filtered seawater obtained from 
Queenscliff, Victoria.  The 800-900 ml volume of seawater was bubbled with air prior to and 
during the experiment at a rate of approximately 200 ml/min.  This rate was sufficient to 
saturate the solution with air, as indicated by previous experiments.  The working electrodes 
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consisted of an approximately 1 cm2 area of the metal or alloy of interest manufactured from 
the end section of bar stock, mounted in an epoxy resin (Buehler Epo-Thin) and ground to a 
2400 grit finish on silicon carbide paper. 

Potentiodynamic polarisation was completed in two steps, the cathodic scan followed by the 
anodic scan after the electrode was re-ground.  Both scans were performed at a scan rate of 
10 mV/minute after one-hour equilibration in the test solution.  The cathodic scan consisted of 
polarisation from the rest potential to a potential 400 mV more negative than the rest 
potential.  The anodic scan consisted of polarisation to positive potentials until a current 
density of 0.01 A/cm2 was attained, after which the potential was scanned back to the rest 
potential. Potentiodynamic polarisation experiments were conducted upon bare and CCC 
cadmium, untreated and passivated stainless steel SS321(Ti), alloy steel 4340 and sections of 
Hawk hydraulic pipe received from the RAAF.  The pipe section were tested in the as-
received condition and after passivation. 

 

2.2.2 Potential/current galvanic experiments 

Potential/current galvanic experiments were conducted using a Solartron 1287 
Electrochemical Interface.  A three electrode cell was used, with the more noble metal 
connected as the working electrode and the more active metal connected to ground.  The 
mixed potential of the couple was monitored using a saturated calomel electrode along with 
the current flow between the active and noble metals monitored using a zero resistance 
ammeter.  The solution used was air bubbled, filtered seawater obtained from Queenscliff, 
Victoria.  The metal electrodes were manufactured from rod turned in a lathe and ground to a 
1200 grit finish on silicon carbide paper, this finish being the finest attainable on the 
cylindrical electrodes.  One end of the rod was mounted in epoxy resin to mask it from the test 
solution and the remainder was divided in equal sections of 3 cm2 along its length as shown in 
Figure 2.  The metal rod electrodes were suspended in the electrolyte so as to expose different 
areas to solution.  In this way it was possible to easily alter the ratio of noble to active metal 
area and to measure the resulting mixed potential and current flow between the active and 
noble electrodes.  Typically the current and potential response was measured for 150 seconds. 

 

Epoxy resinEpoxy resin  
Figure 2: Schematic of a galvanic rod electrode 

 

2.3 Tests in humid air  

Tests in humid air were conducted on specimens designed to be analogues of the Hawk LIF 
hydraulic pipes.  The specimens were made of SS321(Ti) rods ground to a 2400 grit finish on 
silicon carbide paper with no passivation treatment, a similar finish to the as drawn Hawk 
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Lead in Fighter (LIF) hydraulic pipes.  The specimens were electroplated with cadmium to a 
thickness of approximately 25 μm for half of their length. The cadmium surfaces of some 
specimens were chromate conversion coated.  All specimens were dipped in seawater and 
dried prior to exposure in an 85% relative humidity atmosphere.  Photographs of the 
specimens were taken after 10 and 46 days of exposure. 

 

2.4 Cadmium thickness measurements 

X-ray fluorescence was used to measure the cadmium coating thickness on swaged unions 
and nipples fitted to pipe work removed from service (P/N: KB290K0026-178, corroded pipe 
from aircraft A27-17) and also on a new pipe work sample supplied by the TFSPO 
(P/N: KB290L004-146). Cadmium thickness measurements were taken on the hydraulic 
fittings using a UPA Veeco XRF-300AT thickness analyser, using a beam size of 0.3 mm and 
measurement time of 30 seconds.  The instrument was calibrated using cadmium on steel 
standards with certified thicknesses of 4.62, 12.4, 22.6 and 38.4 μm. 

The measurements were made on areas where the cadmium plating appeared intact, with a 
CCC present and no white corrosion products. 

 

3. Results 

3.1 Electrochemical Results 

3.1.1 Potentiodynamic polarisation 

The combined anodic and cathodic potentiodynamic polarisation scans for cadmium, CCC 
cadmium, alloy steel 4340 and stainless steel SS321(Ti) are displayed in Figures 3-6 
respectively.  The values of the corrosion, pitting and protection potentials together with the 
corrosion, passive and cathodic currents are listed in Table 2. These values were determined 
from the potentiodynamic polarisation scans. 
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Figure 3: Combined polarisation diagram for 

cadmium 
Figure 4: Combined polarisation diagram for 

CCC cadmium 
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Figure 5: Combined polarisation diagram for 

alloy steel 4340 
Figure 6: Combined polarisation diagram for 

stainless steel SS321(Ti) 

 
 
Table 2: Corrosion, pitting and protection potentials, and corrosion, passive and cathodic currents 

as determined from Figures 3-6 

 

Corrosion 
potential 

(V) 

Pitting 
potential 

(V) 

Protection 
potential 

(V) 

Corrosion 
current 
(A/cm2) 

Passive 
current 
(A/cm2) 

Cathodic 
current 
(A/cm2) 

Cadmium -0.773 N/a N/a 1.03 x 10-4 N/a 1.45 x 10-4 
CCC 
Cadmium -0.742 -0.715 N/a 5.67 x 10-6 N/a 4.96 x 10-5 

Alloy steel -0.578 N/a N/a 5.15 x 10-5 N/a 9.97 x 10-5 
Stainless steel -0.262 0.201 -0.06 2.83 x 10-7 6.75 x 10-7 9.73 x 10-5 
 
The potentiodynamic polarisation results indicate that stainless steel had the highest corrosion 
potential (most positive) compared to cadmium and the alloy steel and was therefore the most 
noble. The cadmium, with and without the CCC, had the lowest corrosion potential and was 
therefore the most active.  When coupled, the metal with the more noble potential will become 
a net cathode and the metal with the more active potential will become a net anode.  This will 
result in a reduction in the corrosion rate of the noble metal and an increase in the corrosion 
rate of the active metal.  The cathodic current density for cadmium was highest and the CCC 



DSTO-TR-1833 
 

 
6 

cadmium had the lowest cathodic current density.  The cathodic current density is important 
when looking at galvanic corrosion interactions, as it is a measure of the rate at which 
cathodic reactions, in this case the reduction of oxygen, can take place on the metal surface.  
When two metals are coupled, the limiting cathodic current density of the more noble metal 
will support the corrosion rate of the more active metal. 

Since stainless steel is the most noble of the metals in the group, its cathodic behaviour is 
important, as it will support the anodic or metal dissolution reactions on the more active 
metals.  To minimise the cathodic reaction rates on stainless steel, surface treatments have 
been developed.  The passivation treatment thickens the protective oxides on stainless steel 
resulting in a less efficient surface for electron transfer to cathodic reactants, which leads to a 
reduction in the rate of these reactions.  A further set of cathodic polarisation tests were 
conducted to determine the effectiveness of a typical passivation treatment on the stainless 
steel. The cathodic polarisation curves for passivated and non-passivated stainless steel are 
shown in Figure 7. 
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Figure 7: Cathodic polarisation curves for passivated and non-passivated stainless steel SS321(Ti) 

 

Figure 7 shows a significant change in the cathodic polarisation behaviour for the passivated 
stainless steel compared to the unpassivated stainless steel.  The cathodic limiting current for 
the oxygen reaction on the stainless steel was reduced from 9.73 x 10-5 (non-passivated) to 
5.84 x 10-6 A/cm2 (passivated). This reduction indicates that the passivated stainless steel is a 
less efficient cathode and would not accelerate the corrosion rate of coupled active metals to 
the same degree as unpassivated stainless steel. 

Numerous attempts were made to ascertain whether the stainless steel used in the Hawk had 
undergone a passivation treatment, but no information was received from the RAAF or BAE 
SYSTEMS.  To test for this, and to determine the effect of the passivation treatment, cathodic 
polarisation tests were conducted upon the as-received stainless steel pipe and on samples of 
pipe which were chemically passivated. The results are shown in Figure 8. 
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Figure 8: Cathodic polarisation curves for passivated and non-passivated stainless steel BS T72 

 

The results shown in Figure 8 indicate a change in the cathodic polarisation behaviour of the 
pipe before and after the passivation treatment. The limiting cathodic current density was 
reduced from 1.16 x 10-4 A/cm2 for the as received pipe to 1.28 x 10-5 A/cm2 after passivation, 
a 10-fold reduction after the passivation treatment. This indicates that the stainless steel pipes 
were either not passivated, or any passivation treatment was no longer effective, when the 
pipe was tested. 

 

3.1.2 Galvanic potential and current tests 

The potentiodynamic polarisation data, shown in Table 2, indicate large enough differences in 
the corrosion potentials of the metals for galvanic corrosion to take place.  The rate at which 
the coupling could accelerate the corrosion of the active metals within these couples was 
determined.  This involved measuring the potentials of metal couples and the current flowing 
for anode to cathode area ratios of between 1:10 and 10:1.  The relative cathode and anode 
areas in a galvanic couple can significantly affect the corrosion behaviour of the anode. The 
results of the galvanic potential and current experiments for couples with as received and 
passivated stainless steel and cadmium (bare and CCC) are shown in Figures 9-12. 
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Figure 9: Potential and current flow for the 

stainless steel/cadmium couple 
Figure 10: Potential and current flow for the 

stainless steel CCC/cadmium 
couple 
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Figure 11: Potential and current flow for the 

stainless steel 
(passivated)/cadmium couple 

Figure 12: Potential and current flow for the 
stainless steel (passivated)/CCC 
cadmium couple 

 
 

The data shown in Figures 9-12 was used to calculate the anodic current density of the  bare 
cadmium and CCC cadmium when coupled to stainless steel (passivated and non-passivated) 
as well as the net loss in cadmium thickness. This was achieved by dividing the galvanic 
current for the different area ratios, shown in Figures 9-12, by the area of exposed cadmium.  
This current was then added to the corrosion current listed in Table 2, measured from the 
potentiodynamic diagrams in Figures 3 and 4.  The Faraday equation was employed to 
convert the current density into mass loss. The loss in thickness was calculated using the 
density of cadmium.  The results for the four couples of interest, cadmium (bare and CCC) 
versus stainless steel (passivated and non-passivated) are shown in Figures 13-16. 
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Figure 13: Anodic current density and rate 

of thickness loss for cadmium 
coupled to stainless steel 

Figure 14: Anodic current density and rate of 
thickness loss for CCC cadmium 
coupled to stainless steel 
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Figure 15: Anodic current density and rate 

of thickness loss for cadmium 
coupled to stainless steel 
(passivated) 

Figure 16: Anodic current density and rate of 
thickness loss for CCC cadmium 
coupled to stainless steel (passivated) 

 
 
The galvanic couple results indicate that, for the bare cadmium non passivated  stainless steel 
combination with a 1:1 (10:10) area ratio, the corrosion rate of the cadmium was 110 μA/cm2 
compared to 103 µA/cm2 for uncoupled cadmium; with a ratio of 1:10, the corrosion rate of 
the cadmium was 210 μA/cm2, twice the uncoupled rate.  In the case of CCC cadmium the 
uncoupled corrosion rate was much lower at 5.7 μA/cm2, and for the 1:1 and 1:10 area ratios 
with non passivated stainless steel the corrosion rate increased to 13.5 and 126 μA/cm2 
respectively. This equated to a 2.5 and 20 fold increase in the uncoupled corrosion rate.  For 
the passivated stainless steel coupled to bare cadmium the corrosion rates were 103, 104 and 
115 μA/cm2 for the uncoupled cadmium, 1:1 and 1:10 area ratios respectively, only small 
increases. The CCC cadmium/passivated stainless steel combination the corresponding 
values were 5.7, 6.2 and 14.4 μA/cm2 for the uncoupled CCC cadmium, 1:1 and 1:10 area 
ratios respectively a slight increase for the 1:1 area ratio and a 2.5 fold increase for the 1:10 
area ratio.  In the non passivated state the stainless steel increased the corrosion rate of bare 
cadmium slightly and the CCC cadmium significantly.  However, the passivation treatment 
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substantially decreased this galvanic effect as indicated by a corrosion rate of 14.4 μA/cm2 for 
a 1:10 area ratio compared to 126 μA/cm2 without the passivation treatment. 

Also of interest is the galvanic couple between non passivated stainless steel and 4340 alloy 
steel, as the alloy steel substrate could be coupled to the stainless steel if the cadmium is 
removed by corrosion.  The potential and current flowing for the various area ratios of the 
alloy steel/stainless steel couple are shown in Figure 17. The anodic current density of the 
alloy steel and its thickness loss calculated for the range of area ratios is shown in Figure 18. 
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Figure 17: Potential and current flow for 

stainless steel alloy steel couple 
Figure 18: Anodic current density and rate of 

thickness loss for alloy steel stainless 
steel couple 

 
 
The results of the galvanic coupling of stainless steel to alloy steel indicate that the alloy steels 
corrosion rate will be increased from the uncoupled rate of 1.5 μA/cm2 to rates of 6.4 and 
46 μA/cm2 for the 1:1 and 1:10 area ratios of mild steel to stainless steel respectively a 4 and 30 
fold increase. 

The results of coupling the cadmium to alloy steel indicate that the corrosion rate of the 
cadmium was increased from 110 to 181 μA/cm2 and 1070 μA/cm2 for area ratios of 1:1 and 
1:10 respectively (Figures 19-22).  The acceleration of the corrosion rate of CCC cadmium is 
from a base rate of 5.7 to 63 μA/cm2 and 790 μA/cm2 for area ratios of 1:1 and 1:10 
respectively, a 10 and 140 fold increase respectively. In this testing a large increase in the 
galvanic potential was witnessed as the cadmium area was increased beyond the 1:1 area ratio 
that may have been due to oxide formation on the alloy steels surface. 
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Figure 19: Potential and current flow for the 

alloy steel/cadmium couple 
Figure 20: Potential and current flow for mild 

steel/CCC cadmium couple 
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Figure 21: Anodic current density and rate 

of thickness loss for alloy 
steel/cadmium couple 

Figure 22: Anodic current density and rate of 
sectional loss for alloy 
steel/CCC cadmium couple 

 
 
3.1.3 Tests in humid air 

These tests were conducted in an attempt to replicate the type of conditions the hydraulic 
pipes and fittings would experience in service.  That is, contamination with seawater to leave 
salt residue and exposure to a moist environment.  The specimens were left in the humid 
environment and the corrosion damage assessed on two occasions.  After 10 days, white 
corrosion products typical of cadmium hydroxide and brown-black corrosion product typical 
of cadmium oxide were observed at the cadmium/stainless steel interface.  There was little 
cadmium corrosion product observed away from this interface indicating that galvanic 
interaction at the interface had produced the corrosion of the cadmium.  Images of this 
corrosion are shown in Figures 23 and 24 for the bare cadmium and CCC cadmium specimens 
respectively.  The specimens after 46 days of exposure showed extensive corrosion product 
formation, with black corrosion product more prevalent (Figures 25 and 26).  Since no 
corrosion of cadmium away from the interface was observed, it is concluded that the contact 
between the cadmium and the stainless steel was responsible for the accelerated corrosion of 
the cadmium. 
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Figure 23: Corrosion of cadmium coated stainless 

steel after 10 days in 85% RH air 
Figure 24: Corrosion of CCC cadmium coated 

stainless steel after 10 days in 85% RH 
air  

  
Figure 25: Corrosion of cadmium coated stainless 

steel after 46 days in 85% RH air 
Figure 26: Corrosion of CCC cadmium coated 

stainless steel after 46 days in 85% RH 
air 

 
 
The distance that corrosion extended from the cadmium/stainless steel interface was 
approximately 3-4 mm.  This is in agreement with the theoretical calculation of 3.5 mm over 
which the galvanic interaction between cadmium and stainless steel may extend when 
covered by a thin moisture film (Appendix A). 

 

3.2 Cadmium thickness measurements  

For pipe-work and fittings removed from service, the measurements were made at both ends 
of the pipe-work as there were significant differences in the extent of corrosion damage. The 
minimum thickness for cadmium coatings as detailed in DEF(STAN) 03-19/2, Amendment 1 
(21/11/96) [3] is 10 μm for pipes, an average minimum thickness of 14 μm for the swaged 
nipples and a minimum thickness of 6.5 μm for the swaged unions.  The cadmium thickness 
was measured at several locations around the swaged union as detailed in Figures 27 and 28.  
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The average measured cadmium thicknesses for the corroded and new fittings are displayed 
in Tables 3 and 4 for both the unions and the nipples. The cadmium coating was CCC. 
 

 
 

Figure 27: Cadmium thickness measurement locations on swaged union 

 
 

Table 3: Cadmium thickness on swaged unions at locations shown in Figure 27 

 
 

 Average Thickness from 3 measurements, μm 

Location As new component Least corroded end 
from Hawk A27-17 

Most corroded end 
from Hawk A27-17 

1 13.1 5.2 2.9 
2 13.5 5.1 2.7 
3 9.0 5.1 3.3 
4 10.0 4.0 2.7 
5 10.0 4.4 3.5 
6 Not accessible 4.2 2.4 

 
 

 
 

 

Figure 28: Cadmium thickness measurement locations on swaged nipple 
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Table 4: Cadmium thickness on the swaged nipples at locations shown in Figure 28 

 
 

 Average Thickness from 3 measurements, μm 

Location As new component Least corroded end 
from Hawk A27-17 

Most corroded end 
from Hawk A27-17 

1 10.0 3.3 3.3 
2 7.4 3.2 3.2 
3 11.0 3.4 3.1 
4 Not accessible 2.9 2.5 
5 Not accessible 2.7 2.0 
6 13.0 4.9 Corroded 
7 8.0 3.9 Corroded 

 
 
The cadmium plating thicknesses on the unions and nipples were less than the minimum 
requirements of DEF(STAN) 03-19/2, Amendment 1 (21/11/96).  The cadmium plating 
thickness measurements taken on the swaged unions of as new pipe work, supplied by 
TFSPO, were greater than the minimum requirements of DEF(STAN) 03-19/2, Amendment 1 
(21/11/96).  The thickness measurements taken from the swaged nipples on the new pipe 
work were generally greater than the minimum requirements, with the exceptions of locations 
2 and 7. 

 

4. Discussion 

The potentiodynamic polarisation results indicate that the cadmium coated 4340 steel coupled 
to stainless steel will act as the anodic part of a galvanic couple.  This coupling will cause 
accelerated corrosion of the cadmium. The 4340 steel will also couple to the stainless steel 
again forming the anodic portion of the couple. 

The potential/current galvanic experiments indicated that an increase in the cadmium 
corrosion occurred when it was coupled to stainless steel.  This increase was governed by the 
relative areas of the couples and was greater when CCC cadmium was coupled to stainless 
steel, up to a 20-fold increase in the case of a 1:10 cadmium/stainless steel area ratio.  The 
galvanic effects were markedly diminished by the passivation of the stainless steel, with the 
increase in corrosion rate being only 2.5 times that of the uncoupled CCC cadmium rate at the 
1:10 area ratio.  

The alloy steel nipples and unions will corrode more rapidly if coupled to stainless steel, a 30-
fold increase for a 1:10 area ratio of alloy to stainless steels. However, once the alloy steel is 
exposed, the cadmium will corrode at a faster rate to protect the steel, as designed, and a three 
metal galvanic couple will be established. The alloy steel is a more efficient cathode than 
stainless steel and would increase the corrosion of any remaining cadmium above the rate due 
to the coupling with stainless steel.  

The exposure tests showed that galvanic corrosion occurs in high humidity atmosphere with 
cadmium coupled to stainless steel and salt contaminant present.  It was also shown that the 
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galvanic interaction occurred over a short distance of approximately 3-4 mm from the 
galvanic interface.  It therefore follows that if the stainless steel was painted for at least this 
distance, the corrosion may not occur.  This has subsequently been confirmed by 
correspondence with BAE SYSTEMS which stated that corrosion of the hydraulic parts was 
not a problem in the RAF fleet [4]. An image of an in-service part supplied by BAE SYSTEMS 
clearly indicated a protective coating present over the first few centimetres from the swaged 
galvanic interface.  A protective coating applied in this manner will prevent galvanic 
interaction between the cadmium and the stainless steel in atmospheric conditions. 

The cadmium plating thickness on ex-service hydraulic fittings was less than the specified 
requirement.  The measurements were taken on surfaces that appeared not to have degraded 
in service (eg. internal surfaces not exposed to the corrosive environment). Therefore the low 
cadmium thicknesses were as manufactured. 

This work has shown that the corrosion of the Hawk hydraulic fittings was due to a 
combination of several factors: 

• The use of dissimilar metals i.e. CCC cadmium in contact with stainless steel  caused 
galvanic corrosion. 

• The use of stainless steel without passivation or a protective coating increased the 
corrosion rate of the cadmium. 

• The below specification cadmium coating thickness, lead to premature removal of 
the cadmium. 

• The location of the aircraft, close to the sea in a salt laden atmosphere, ensured the 
presence of a thin moisture film to support the corrosion. 

Several steps may be taken to minimise or prevent future corrosion problems. 

1. If a suitable coating is applied to the first few centimetres of stainless steel pipes 
adjacent to the swaged connections, the risk of galvanic corrosion will be reduced.  An 
alternative is to use a corrosion prevention compound conforming to Boeing Material 
Specification BMS 3-35, for example: Dinitrol AV15 or Cor-Ban 35. 

2. If the stainless steel pipes are given a suitable passivation treatment, then any failure 
of the coating applied in step 1 should not result in significant corrosion of the 
cadmium. 

3. Ensuring that the unions and nipples have the correct cadmium coating thickness will 
extend the life of the fittings. 

 

5. Conclusions 

The premature failure of the Hawk LIF hydraulic fittings was due to galvanic corrosion 
interactions between the cadmium, mild steel and unprotected stainless steel components, 
combined with a cadmium coating thickness below specification and the use of the aircraft in 
a coastal location.  The failures can be prevented in future by the use of a suitable coating 
applied to the stainless steel pipe adjacent to the swage, the use of passivated stainless steel 
piping and the correct cadmium coating thicknesses applied to the fittings. 
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Appendix A:  Calculation of range of galvanic couple 

To determine the range over which galvanic interactions can occur the contact potential 
difference in aerated seawater was measured for the cadmium stainless steel couple.  This was 
found to be approximately 500 mV.  The current flowing between these two metals when 
coupled was also measured and found to be approximately 5 μA.  For this couple the 
resistance is therefore: 

Resistance = 500 mV / 5 μA  = 100 000 Ω 

Also from previous studies a typical surface coverage of salt could be 20 μg/cm2 and that this 
would form a 1 M solution when exposed to 95% relative humidity.  The thickness of this 
solution can then be calculated as follows: 

Thickness = 20 μg / (58(molecular mass NaCl) x 1000) = 3.5 x 10-4 cm or 3.5 μm. 

Using the conductivity of a 1 M NaCl solution of 0.01 S cm-1 the resistance of a 1 cm cross 
section of the surface moisture film 1 cm long was estimated to be: 

Moisture resistance = 1 cm x 1/(0.01 S cm-1 x 3.5 x 10-4 cm x 1 cm) = 285714 Ω 

The distance over which current can be transferred through this thin moisture film is therefore 
the resistance divided by the moisture resistance and is equal to 0.35 cm. 
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